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The time evolution of the mean deviation of initially close trajectories in a stochastic dynamical sys-
tem is investigated. It is shown both for additive and linearly coupled multiplicative noise that the mean
deviation loses its dependence on initial conditions for long times. For shorter times a power law is
found for certain types of additive noise processes, in sharp contrast to the exponential separation of ini-
tially nearby trajectories in deterministic chaotic systems. Exponential time evolution is obtained for
linearly coupled multiplicative noise after an initial transient during which more complex regimes, in-

cluding a superexponential stage, can take place.
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I. INTRODUCTION

One of the typical signatures of instability of motion
exhibited by large classes of dynamical systems is sensi-
tivity to initial conditions, whereby initially close trajec-
tories diverge subsequently in the course of time. It is
well known that in deterministic chaos the divergence is
on the average exponential, its rate being an intrinsic
property of the dynamics given by the system’s largest
Lyapunov exponent. Let

X, =f(X,) (1.1)

be the evolution law. By definition, the largest Lyapunov
exponent is given by
1. [ F(Xy+e€)—£1(Xy)l

= lim lim —In ,
n—ow el -0 N |€\

o (1.2)

max
where € represents the initial error vector. Notice the
presence of a double limit in this definition, to be taken in
the precise order indicated, entailing that sensitivity to
initial conditions is in essence a global property requiring

|

a full scanning of the tangent space of the reference tra-
jectory. Now, in a typical physical application sensitivity
to initial conditions is manifested through the transient
growth of an initial error, and it is precisely this property
that is at the origin of the limited predictability of unsta-
ble dynamical systems. It is therefore of interest to ex-
tend the formulation of sensitivity to initial conditions
based on Eq. (1.2) to account for the time development of
a small but finite initial error over a small initial time
period, prior to its final saturation to a level determined
by the structure of the system’s attractor.

In a previous publication [1] C. Nicolis and one of the
present authors have put forward such an extended for-
mulation for dissipative systems giving rise to determinis-
tic chaos. The system is run for a certain transient period
of time until it reaches its attractor. At this moment,
which is regarded as the initial time n =0, the state is
slightly perturbed by an error vector €, and the evolution
of the initial (X;) and perturbed (Y,=X,+€) states is
followed simultaneously, while at the same time an aver-
age over the initial positions on the attractor is per-
formed. This leads to the following equivalent definitions
of mean error {u_(n)),

1
(ue(n)>=—ideXOpO(XO)deYOIY,l-Xn!8(|Y0—-X0|—e)

= - X Y’
frdeFleY Xlp,(X)p,(Y)

where N is a normalization factor, p,(X) is the probabili-
ty density on the attractor and I' denotes the phase space.

In many instances a dynamical system is subjected to a
variety of complex perturbations impinging from the en-
vironment, which are perceived by the underlying dy-
namics as stochastic forcings. Furthermore, naturally
occurring dynamical systems generate their own stochas-
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(1.3)

ticity through the mechanism of thermodynamic fluctua-
tions. It is therefore of interest to extend the concept of
sensitivity to initial conditions to this wider class of sys-
tems. This is the principal objective of the present work.
Considerable effort has been devoted during recent years
in the diagnostics of chaos and, in particular, in distin-
guishing deterministic chaos and random noise. As we
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shall see in the present work the properties of these two
classes of systems are not substantially different as far as
sensitivity to initial conditions is concerned, and in some
cases it may even turn out that a noise process is, in a cer-
tain well-defined sense, less sensitive (and hence more
predictable) than deterministic chaos. It is, therefore,
our opinion that the currently overemphasized contrast
between noise and chaos should be reassessed.

In Sec. II sensitivity to initial conditions is formulated
and explored for systems subjected to additive Gaussian
noise. Contrary to deterministic chaos, sensitivity to ini-
tial conditions is found to obey to a power law. Multipli-
cative noise is analyzed in Sec. III. It is found that ex-
ponential sensitivity to initial conditions is now generic
but can be preceded by more complex regimes, including
the possibility of superexponential behavior. The impli-
cations of the results and comparisons with recent
theories of Lyapunov exponents for stochastic systems
are carried out in Sec. IV.
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II. GENERAL FORMULATION AND ADDITIVE
GAUSSIAN NOISE

Consider a stochastic dynamical system

X,=f(X,_)+E,, 2.1

where f represents the deterministic path [drift, Eq. (1.1)]
and &, is a (multi) Gaussian Markov noise. Let X and Y
be two realizations of the process separated at the initial
time by a distance € within the range of the finite pre-
cision on the initial conditions. Following the discussion
in the Introduction on error growth in deterministic sys-
tems the mean deviation between these two realizations
at a certain time n will be defined as [ [1], Eq. (3)]

<ue(n)>=f0°°upe,,,(u)du, (2.2a)

where the error probability distribution P, ,(u) is given
by

Pe,n(u)=%frdxfrdY 8(IX—YI—u)f dXo [d¥eoo(XoX 8(X —F"(Xo, {£)D8Y —F' (Yo {n})) )5 Yo Xol —€).

(2.2b)

Here F"(X,, {£}) and F(Y, {1} ) denote the result of the nth iteration of X, =f(X,_,)+§&,, Y,=f(Y,_,)+7, from
the initial values X, and Y, respectively. Introducing the transition probabilities P(X,n|X,,0), P(Y,n|Y,,0) we may

further write Eq. (2.2b) in the form

1
P (=~ [ dX [ dY8(X=Y|=u) [ dX, [ d¥oo(Xo)P(X,1|X0,0)P (Y, 1]¥,008(1¥o—Xol —e),

(2.3)

where we extended the discrete index n to continuous time ¢. It is convenient to extend formally the range of u to the

entire real axis and switch to the characteristic function,

Gl,t)= [ " due™P_,(u).

(2.4)

Inserting Eq. (2.3) into Eq. (2.4) one obtains then for a one variable system

G(k,z)=%f_""wdxopdxo){G*(k,XO,t)G(k,XO+e,t)+G*<k,X0,t)G(k,XO—e,t)

+G (k, X0, 1)G*(k, X, +€,1)+ Gk, X, )G*(k,Xo—€,1)} ,

where we assumed that the range of variation of X is the entire real axis,

G(kXo,t)= [ © dX e™P(X,1X,,0),

and G *(k,X,?) is its complex conjugate. Introducing the cumulant expansion,

s "f—f"«xn»c

n=1

(eikX) =exp

>

(2.7

where ((X")), is the nth cumulant, we have for a Gaussian process

)

G (k,)=2 [ " " dX,p(Xo){expl —k?o*(1)]}cos |ke

<X(X())t)> » (2-8)

where o%(¢)={( X))}, and (X(X,,?)) is the mean. Hereafter, we will treat the case that the initial position X, is del-

ta distributed. The corresponding distribution function is then

d ’ d ’
R u—egp (XXon) utegy (X(Xo0)
P ()= |—L— - +exp [— 2.9)
SR Py ‘ P 407(1) P 407(1)
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From Eq. (2.2a), we get for the mean distance

2
(X (Xy,1))

172 aXO

2
(u))y=21Z (2)
™

exp | —

20(t)

where
=02/Vr) [exp(—t2
erfz=(2/ v)foexp( t°)dt
For [€(3/3X){X(Xq,1))/20(t)]>>1 (short times), by

introducing the asymptotic expansion of the error func-
tion [2]

2 _2 & (=1)"2m—1)M
f(z)=1——=e * s 2.11
erf(z) V'l ,,,z=0 22(22%)" @1D
where (—1)!!=1, we have
0
Cule) EaXO (X(X,,t)). (2.12)

For [e(3/3X,){X(X,,t))/20(t)]<<1 (long times), we
find

172

(udey~2 [0 (2.13)
where the error function is now expanded as [2]

erf(z)=——e¢ ¢ i 2m Z2m+1

Vi o IX3X - X(2m +1) )

(2.14)

Equation (2.13) does not depend on ¢, that is, the system
has already lost its memory of initial conditions due to
mixing and has reached its asymptotic regime.

As an example, let us consider the Ornstein-Uhlenbeck
process,

a—X(t)——yX )+ R(2), (2.15)
where R (t) is a Gaussian white noise,
(R(1))=0, (R(t))R(t,))=0%(t;—t,). (2.16)
For this process one finds straightforwardly
(X (X, 1)) =Xge 7, (2.17)
and
o2
oX)=——(1—e 2, (2.18)
2y
A characteristic time for mixing can be defined by
(X
aX°<X o) 1 (2.19)
20(t*) ’ '

and is found to be

(X(Xo,0)) |erf aX°(XX0’t)> 10
aX0 0-1)7 er 20(1) ’ .10
[
=———ln 1+J/—2 (2.20)
20

The behavior of {u (7)), Eq. (2.10), will depend critically
on the relation between ¢* and y !, the second charac-
teristic time present in this problem. Two limiting re-
gimes can be distinguished.

A t*<<y!

Using Eq. (2. 20) one sees that this inequality amounts
to L In(1+y€?/20%) << 1, or
40?2

y << ——.

(2.21)
&2

Depending now on the value of time ¢ relative to t* and
y~! one may simplify Eq. (2.10) using the expansion

Equation (2.11) or (2.14). We obtain [Egs.’ (2.12) and
(2.13)]
€e V' (r<t*), (2.22)
(u (1))~

V2/ymo(l—e 212 (¢ >1*). (2.23)

The latter expansion holds uniformly for values of ¢ ir-
respectively for y !, provided that they are larger than
t*. In this range one may distinguish two finer subre-
gimes.

1 t<<y™!

Expanding the exponential in Eq. (2.23) one finds

0.25} 2y — -
-
-
0.2 -
/

A - e = (3)
£ 0.15 ——
g

0.1

-
0.05 / =~

FIG. 1. Short-time evolution of initial distance for additive
Gaussian noise. The solid line represents the numerical evalua-
tion of the full equation (2.10) with parameter values o=1,
Yy =25, and €=0.1. Curve (1) is the analytical curve of Eq.
(2.22), (2) is that of Eq. (2.24a), and (3) is the saturation level
given by Eq. (2.4b).
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FIG. 2. Same as Fig. 1 but for the larger drift coefficient
¥=1000. Curve (1) is the analytical curve of Eq. (2.22) and (3)
is that of Eq. (2.24b).

<us(t))~2—‘1t‘/2 (t*<t <y™h, (2.24a)
Vo
2. t>y7!
(u ) ~V2/yma (y~l<t). (2.24b)

Figure 1 shows the numerical plot of Eq. (2.10) for 0 =1,
vy =25, €=0.1. We also represent in this figure the
curves defined by Eqgs. (2.22), (2.24a) and (2.24b). We see
that there is a short period during which error is damped.
Subsequently it starts increasing and eventually it reaches
its saturation level. The value of the latter and the time
required for reaching it are in good agreement with the
theoretical estimates.

B. t*>>y7!

As v is increased (or as € is increased at fixed ¥ and o)
the intermediate regime of power-law behavior [Eq.
(2.24a)] shrinks and finally disappears. Initial errors are
then damped monotonically until the saturation level is
reached, as seen in Fig. 2.

In summary, we have shown that in the presence of
stabilizing drift and additive noise errors may at most in-
crease according to a power law rather than exponential-
ly even in the limit of weak damping. This subexponen-
tial growth of initial distance agrees with the theory of
Lyapunov exponents of stochastic dynamical systems
developed by Arnold, where the Lyapunov exponent for
linear systems with stable drift and additive noise is zero
[3]. In other words, there is no sensitive dependence on
initial conditions. This point is in sharp contrast to the
exponential instability of trajectories in a large variety of

1 1
[2mo?(t)]'? x P
0, for X /X, <0.

P(X,t|X,,0)= 20%(t)

(InX /Xy — wot)?

dissipative and conservative dynamical systems giving
rise to deterministic chaos, where the sensitivity to initial
conditions is regarded as the origin of dynamical ran-
domness [4]. Curiously, as we have also shown in this
section, if one takes colored noise as a realization of such
randomness, one is led instead to a subexponential sepa-
ration of nearby trajectories. In this respect, random
noise appears to be more predictable than deterministic
chaos. We suggest that the connection between deter-
ministic and random dynamical systems ought to be
reconsidered in the light of this result.

III. LINEARLY COUPLED MULTIPLICATIVE NOISE

We now consider the case of a multiplicative noise cou-
pled linearly with the system. Let X,Y be two indepen-
dent realizations starting from different initial conditions.
They both obey to the same evolution equation but with
different noise realizations,

)

2 X (0 =[wp+awy (DX (1) (3.1)
—aa-t"Y(t)=[m0+awY(t)]Y(t), (3.2)
<0),'(t)>=O,
(w,(t)0,(t5)) =( 02} e 1727, (3.3)
i,j=XorY,

where a is a real constant. The explicit solution of Eq.
(3.1) is

X (8)=X(0)exp (3.4)

fot[wo-i-aa)x(t')]dt' .
Using Stratonovich interpretation for the stochastic
differential equations (3.1) and (3.2), we find
(In[|X(£,X)|/|1X,|]) =gt (3.5)
and
{{In[1X (£,X )| /1 X0 132 N . =02(1),

where the variance is obtained from Eq. (3.3) in the form

(5]

(3.6)

t/T

o )=20}) 2 (t/T,—1+e ) (3.7)
20 ?)T,t, T, <t
a*(o)t?, t<r,. (3.8)

Since In[|X(t,X,)|/|X,l] is a Gaussian process whose
average and variance are given by Egs. (3.5) and (3.6), re-
spectively, the transition probability is [6]

for X/X,>0

(3.9)

Notice that for positive initial values Eq. (3.9) entails that X (¢) and Y (¢) remain positive and continuous on [0, o).
From the definition Egs. (2.2) and (2.3) the deviation between X (¢) and Y (¢) for this process is now given by
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1 o 0 ) o
<ue(1)>=ﬁf0 dXopo(Xo)fo dYOfO dXP(X,thO,O)fo dY P(Y,1|Y,,0)|X — Y|8(| Yy —X,| —€) (3.10)

_ 1 © =) ©
= J.7ax [ Tavix — Y| [ “dXopo(Xo)P (X, 1|Xo,0)P(¥,11 X, +€,0)

+ [ “dXopo(Xo)P(X,11X,,0)P(Y,1|X,—e,0) l . (3.11)
€
This expression can be further written as

__1- 0 0 _
(usn)y = [ “dx [ “dyx —¥|

fo“’dxopo(xo )P(X,t|X,+€,0)P(Y,1X,,0)

+fwa'Xopo(Xo)P(X,tIXO—e,O)P(Y,tIXO,O)] (3.12)
€
1 © X © ©
=Ff0 dX{fO dY—fX dy (X —Y) fo dX opo(Xo)P (X, t| X, +€,0)P(Y,1|X,,0)
+fdeopO(XO)P(X,tIXo—e,O)P(Y,t|XO,O)’ ) (3.13)
€
Let us introduce the transition probability in terms of transformed variables x =InX and y =InY,
P(X,t]X,,0)dX =Q (x,t|InX,+wyt,0)dx, (3.14)
where

Q (x,t|InXy +wyt,0)=

(3.15)

(x —InX,—wyt)? J

2roX1)] 2 5P 20%(1)

Equation (3.13) becomes

1 © x © x oo
<ue(t)):—2‘f_wdx {f_wdy - fx dy ](e —e”) {f() dXOpO(X())Q [-xat|1n(X0+€)+w0t’0]Q(yal|lnX0+a)0t;0)

+ [ “dXopo(X,)Q [x,1/In(X o —€)+wot,01Q (», t]InX y +41,0) |.
€

(3.16)
Introducing the identity
e*Q (x,t|InX, +wot,0)=Xpexp[wot +10%(1)1Q(x,t|InXy+wot +0%(1),0)
and performing the integration over y with the aid of the relation
412 % [fx dy — f “dy }exp —yomy _,zn)z ] =erf |21 :'ln/z ] (3.17)
(2mo*) —o x 20 (20°)

we arrive at the following expression for {u (¢)):

x +In(1+e/X,)+ot)
[20_2(t)][/2
x +In(1—e/X,)+ot)
. (3.18)
[20’2(1)]1/2

1 o0 00
<u€(z)>=—ﬁexp[motﬂaz(t)]fwdx fo dX oo X )(2X,+€)Q (x,1]0,0)erf

+ [ “dXopo(X,)(2X,—€)Q (x,/0,0)erf

The integration over x can be performed from the identity

x +z

f_wdx Q(x,t|0,0)erf W

=erf

z
PTG l (3.19)

which is a direct consequence of [7]
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fowe"”x_cz"zerf(cx Ydx Z—‘%Texp —4%22 erfc? 2\5§c , (3.20)
where erfc(y)=1—erf(y). Introducing Eq. (3.19) into Eq. (3.18), we obtain
1 i In(1+€e/X,)+oX1)
(uE(t)>=7V— explogt +10%(1)] fo dX,po(X)(2X,+€)erf o] ]
. In(1—e/X,)+0%2)
+ [ T dXopo(Xo)(2Xo—eerf o] 7 H (3.21)
We consider the case of deterministic initial conditions,
Po(Xo)=8(Xy—m), e<m . (3.22)
Equation (3.21) reduces to
(ue(t))=7exp[w0t+%oz(t)] (2m +e€)erf In( I:[ZZ:))]T/;IZ(” +(2m —e€)erf In( lz_[zg(n;))]j-/gz(t) ’ (3.23)

Furthermore, we assume that the initial state is away from the origin (which is an absorbing state), in the sense, € <<m.
The logarithm in Eq. (3.23) can then be expanded for small € /m, yielding,

e/m+o¥t)
2[0’2(1‘)]1/2

—e/m +o(t)

(2m +¢€)erf 2[02(t)]”2

(u (1)) ~1explwgt +%02(t)] +(2m —e)erf

]. (3.24)

Equation (3.24) exhibits two different behaviors, depending on the value of o? comparatively to €/m:

€/m 12 2 €
eerf ——2[02(”]1/2 explogt +30(1)], o™(1)<< o (3.25)
(u )~ 172
€ 20 V1172
2m erf [LU—(;)]— exp[wot+%02(t)], % <o) (3.26)

We see that the € dependence is dropped out in Eq. (3.26). It remains now to see how o (t) itself scales with €/m and
the other characteristic parameters. Upon evaluating the error function in Egs. (3.25) and (3.26) by asymptotic expan-
sion [Eq. (2.11)] or by series expansion [Eq. (2.14)], one may distinguish between four different characteristic regimes:

2
1,2 2 €
(a) eexplogt +10%(t)] |oH(t)< an? | (3.27)
€ e €
€— ————5explwgt +1o(1) <oit)<— |, (3.28)
(b)<ue(”>~ m [wo(1)]/2 plwot + 5 ] 4m? m
5 172
(c) m |20 ] explwot +1o%(1)] i’—i— <oXt)<4|, (3.29)
(d) 2m exp[wgt +1o%(1)] (4<0X(2)) . (3.30)
[
In the first regime (a), Eq. (3.27) shows exponential sensi- 2002V r.t1 for t >
tivity to initial conditions as long as w,= 0. If it happens Cu () ~ eexpla*{@i)r 1] for Ter (3.31)
that the drift coefficient is zero, w,=0, we obtain from € eexp[La*(wi)i?] for t <<7, . (3.32)

Eq. (3.8)
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When the correlation time of noise 7, is small enough,
o¥(1,)<<€*/4m?, we have a purely exponential diver-
gence of nearby initial conditions measured by the quan-
tity a?{w?)7,, which plays the role of the Lyapunov ex-
ponent. On the other hand, for large correlation time
such that o*(r,)>>€*/4m?, Eq. (3.32) shows superex-
ponential sensitivity to initial conditions for values of ¢
limited to the regime (a). Recalling that the dependence

J

on initial distance only appears for the short-time regime,
the superexponential instability might become increasing-
ly relevant as the correlation time gets large. Clearly, in
this time range the Lyapunov exponent loses its
significance. In regime (b), substituting the explicit ex-
pressions for the variance Eq. (3.8) into Eq. (3.28), we see
that

€ 1 1 2 2 62
“ma 2r{wl)r) T;exp[(wo+a (0?)7r,)t] for e >oi(1,), (3.33)
(ue(t))~ € € 1 _l_exp[a) t+la2<w2)t2} for _€_<<o_2(7_ ) (334)
ma (r{w?))\/? t 0" T2 1 ” c

The power-law decay correction which now appears reduces the exponential sensitivity to the initial distance. More-
over, Eq. (3.28) depends on the distance from the origin m as well as the initial distance. As we can see from Eq. (3.9)
no transitions occur from the origin. Thus, the growth of mean distance would tend to be suppressed as a particle
reaches the origin. When the initial condition is chosen far away from the origin this anomalous time regime is re-
duced, as seen directly from the fact that the interval €*/4m?<o*(t)<e/m decreases monotonically with m /e for

m/e>1.

In the next intermediate regime (c), by substituting Eq. (3.8) into (3.29) it follows that

172
2at) 7. - 20 2 € 2
2ma — V't exp[(wy+a*(w?)T,)t] for >0 (r.), (3.35)
(u )~ (o?) 172
2ma : t exp[wgt +La*(w?)t?] for 4 <<o(1,)
0 2 1 c’* (3.36)

The exponential growth is now accelerated by contribu-
tions in the form of positive powers of ¢, these powers be-
ing 1 for ¢t <7, and 1 for ¢t > .

Finally in the asymptotic regime (d), Eq. (3.30) shows
the same time behavior as in the short-time regime but
with a different coefficient. Since the coefficient shows no
€ dependence, this exponential blow-up is no longer relat-
ed to the sensitivity to initial conditions but, rather, to
the absence of nonlinear saturation terms in the equations
of evolution Egs. (3.1) and (3.2).

Equation (3.23) has been evaluated numerically. Fig-
ures 3 and 4 represent (u(¢)) vs ¢ for a*(w?)=1,7,=1,
@0y=0, m =1, and €=0.1. In Fig. 3, analytical curves are
deduced from Egs. (3.27)-(3.30). The numerical plot of
the full equation (3.23) starts along an exponential curve
but with the superexponent ta?{w?)t* as the time range
is far below the correlation time of noise 7,=1 [curve
(1)]. The exponential growth is suppressed and {u(t))
even starts to decrease in accordance with the theoretical
curve (2) of regime (b) at ¢t ~0.05 which is specified by
o%(t)~€*/4m?. The plot transits gradually to the inter-
mediate regime where an explosion of the mean distance
is observed, in accordance with the theoretical curve (3).
In Fig. 4, the explosion continues until ¢t ~3.0, which is
approximately given by the time o%(t)~4 and ends
asymptotically with purely exponential growth whose ex-
ponent is now given by a*(w?)7, again in accordance
with theory. We seen that in all time regimes the analyti-

—

cal expressions reproduce the general trends of the nu-
merical plots. It is interesting to note that the initial re-
gime of superexponential sensitivity to initial conditions
is well distinguished from the subsequent purely exponen-
tial time domain. Such time behavior can be observed as
long as the correlation time of noise satisfies the condi-
tion €2/4m? < o?(r,), which can also be readily achieved
by choosing smaller initial error while keeping the corre-
lation time fixed.

<u(t)>
o

0.1 0.2 0.3 0.4

FIG. 3. Short-time evolution of initial distance for linearly
coupled multiplicative noise. The solid line represents the nu-
merical evaluation of the full equation (3.23) with parameter
value a®(w?)=1, 7.,=1, wo=0, m =1, and €=0.1. Curve (1) is
the analytical curve of Eq. (3.27), (2) is that of Eq. (3.28), and (3)
is that of Eq. (3.29).
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FIG. 4. Same as Fig. 3 but for the longer times. Curve (3) is
the analytical curve of Eq. (3.29) and (4) is that of Eq. (3.30).

IV. DISCUSSION

We have outlined a formulation of sensitivity to initial
conditions in stochastic systems along very similar lines
as in deterministic systems. For additive stochastic per-
turbations and a linear stable drift part it turned out that
error growth follows a power law, entailing that the
Lyapunov exponent of this class of systems is zero. For
multiplicative stochastic perturbations a variety of re-
gimes are possible for short times, including a superex-
ponential transient stage during which the Lyapunov ex-
ponent cannot be defined. All these regimes eventually
merge to a regime of exponential growth, but the time
beyond which this regime takes over can be arbitrarily
delayed depending on the value of the correlation time of
the stochastic forcing. If the latter is sufficiently long the
exponential regime may be completely masked by the
long-time regime where initial errors stabilize (in the
mean) to a final saturation value.

Recently Arnold and Kliemann [8] developed an
elegant approach to Lyapunov exponents of stochastic
systems based on the “thermodynamic” formalism and
large deviation theory. They consider the stability prop-
erties of average of the pth moment of Eq. (3.4),
g(p)=lim %m( X (1,X,)IP), g(0)=0, pER.  (4.1)
They show it to be analytic and convex and to control the
asymptotic behavior of the probability distribution of
In|X(¢,X,)/X,, in the sense that

11X (1,X,)] .
—In———F——€F |~exp[—tinf,cpl(r)], t— o,
t | Xol
(4.2)
where I (r) is a Legendre transform of g (p),
I(r)=sup,crlrp —g(p)], rER. (4.3)

Furthermore, for the first and second moments of
In[|X (2,X,)|/|X,|], one obtains

lim %(ln[IX(t,XO)I/|X0|]>=%g (p) (4.4)

t— ©

p=0

(law of large numbers),

2
lim ¢ (In[1X (1, Xo)| /1%, | 1—g () }2) ==—g (p)] _,
ap

t—>ow t

(4.5)

(central limit theorem). The first of these relations pro-
vides one with the stochastic analog of the Lyapunov ex-
ponent.

Let us briefly compare these results with the approach
outlined in the present paper. Using the same procedure
as in Egs. (3.5) and (3.6), one can evaluate g (p) explicitly
for the linearely coupled multiplicative noise case,

t/T

pogt +p2a* {0l (t/T,—1+e 7°)
t

g(p)=lim
t— ©

(4.6)
=pwy+pia*{w?)T,. 4.7)

It follows that
g'(0)=w,, (4.8)
g"(0)=2a¥w?)7,. (4.9)

As we saw earlier [Eq. (3.31)], for time scales t>>7,
a*{w?})7, controls sensitivity to initial conditions and
plays therefore, in this respect, the role of the Lyapunov
exponent (in the absence of the drift term, wy=0). On
the other hand, in the framework of the ‘“thermodynam-
ic” formalism a?{®? )7, governs the asymptotics of fluc-
tuations whereas the Lyapunov exponent viewed as a
long-time average is given by the drift term o, and thus
reduces to zero in the case of w,=0. There is no contrad-
iction between these results, which merely reflect two
different views of the concept of sensitivity to initial con-
ditions. Our view of this concept is more practically
oriented and is motivated by the way one monitors devia-
tions between two initially close histories in a physical ex-
periment. The quantity {u(¢)) that we have introduced
for this purpose contains information pertaining to both
the mean and the variance of the process and is thus re-
lated to g(p) [Eq. (4.1)] rather than to g'(0) or g"(0)
[Egs. (4.4) and (4.5)]. Notice that when the correlation
time 7, gets large, a’(w?)7. and thus g”(0) tends to
diverge, entailing the divergence of the exponent g (p) for
all positive moments [see Eq. (4.7)]. This is the “thermo-
dynamic” signature of the superexponential regime of Eq.
(3.32) which, being valid for the transient (though possi-
bly long) period ¢ <<7,, will not show up as such in a
theory involving averages over an infinite period of time.
Both Arnold’s and our own results show that an ex-
ponential sensitivity to intitial conditions (in an averaged
sense) can no longer be regarded as the exclusive signa-
ture of deterministic chaos. Equally surprising is the fact
that certain noise processes (additive noise) give rise to
subexponential (power-law) behavior, entailing that in
this particular sense the outcome of noise is more predict-
able than the one of a deterministic chaotic system.
Much of the emphasis in the literature placed on the dis-
tinction between deterministic motion and noise on this
basis therefore appears to lose part of its motivation in
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the light of our results. In our view the only clear-cut
difference that one may still identify pertains to the di-
mension of the system’s invariant set, which in the case of
noise increases without bound with increasing embedding
dimension.

In future investigations a closer reassessment of the
similarities and differences between deterministic and sto-
chastic dynamical systems should be undertaken. It
would also be interesting to undertake a study of multi-
plicative noise in the presence of nonlinear saturation

terms enabling the system to reach an invariant probabili-
ty density for long times.
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